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Stationary viscosity-dominated electrified
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Numerical computations and order-of-magnitude estimates are used to describe the
stationary creeping flow of a jet of a Newtonian liquid with finite electrical conductivity
that is injected into a dielectric medium subject to a uniform electric field. The electric
current carried by the jet is computed as a function of the parameters of the problem,
showing that it increases with the conductivity and flow rate of the liquid and with the
intensity of the electric field. The current also depends on the wetting conditions of the
liquid at the injection orifice. Analysis of the transfer of current to the surface of the li-
quid and of the evolution of the jet under the electric stresses that act at its surface
leads to scaling laws for the electric current and other properties of the solution. These
laws fit the numerical results and are in qualitative agreement with experimental data.

1. Introduction
When a jet of an electrically conducting liquid is injected through a nozzle into a

dielectric medium subject to an electric field, the field induces a conduction current
in the liquid that carries electric charge to its surface. The action of the field on this
charge leads in turn to an electric shear that stretches the jet and may reduce its
diameter to values which are orders of magnitude smaller than the diameter of the
injecting nozzle. This mechanism is put to use in electrosprays, where sprays of fine
and nearly monodisperse drops are produced by the breakup of an electrified jet due
to a varicose instability, and also in the electrospinning of nanofibres, where the jet is
made of a polymer solution or melt that solidifies after intense stretching but before
it may break into drops (see Fong & Reneker 2000; Yarin 2003; Frenot & Chronakis
2003 and Huang et al. 2003 for recent reviews). In this latter application, most of the
stretching occurs during the growth of a bending instability whereby the jet begins
to spiral violently at some distance downstream of the nozzle. This instability, which
determines the final diameter of the fibre, has been documented by Reneker et al.
(2000) and Yarin, Koombhongse & Reneker (2001) and analysed by these authors
and by Shin et al. (2001) and Hohman et al. (2001a).

The development of the varicose or bending instability is preceded by a region where
the jet is stationary and axisymmetric, at least if the viscosity of the liquid is suffi-
ciently high. This initial region is of interest because it contributes to the stretching of
the jet, controls the onset and character of the instability, and determines the electric
current carried by the jet as a function of the liquid properties and the flow rate. The
flow in the initial region is the subject of the present paper. In an asymptotic analysis
of the problem, Kirichenko et al. (1986) found that the radius of an axisymmetric
jet of a Newtonian liquid in a uniform electric field decreases as the power −1/4 of the
streamwise distance far away from the nozzle, while Spivak & Dzenis (1998) gener-
alized this result for non-Newtonian liquids with power-law rheologic constitutive
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equations. The evolution of the jet before entering this asymptotic regime was
computed by Hohman et al. (2001b) using a quasi-unidirectional model for the
flow and charge transport (see Gañán-Calvo 1997) coupled with a slender-body
approximation for the electric field induced by the charge of the jet and the image
charges on the electrodes. Feng (2002) simplified the computation of the electric field,
thereby avoiding an artificial bulging of the jet at the nozzle exit in the results of
Hohman et al., and extended these results to include effects of extensional thinning,
extensional thickening, and strain hardening, which are beyond the Newtonian liquid
model of Hohman et al. A shortcoming of these computations is that they do not
determine the electric current carried by the jet.

A different approach was taken by Reznik et al. (2004), who computed the transient
and steady shapes of the surface of a drop of a Newtonian liquid of infinite electrical
conductivity sitting on a metallic plate by using boundary element methods to solve
the Laplace and Stokes equations that govern the flow in the absence of inertial
effects. Their results are extended here to liquids of finite electrical conductivity, as
this property appears to be crucial to achieve stationary solutions. The simplest case
of a creeping flow of a Newtonian liquid issuing into a region where the electric field
would be uniform in the absence of the jet is discussed. An attempt is made to describe
the solution of this problem, which depends on five dimensionless parameters, using
numerical computations and order-of-magnitude estimates.

2. Formulation
Consider a constant flow rate Q of a Newtonian liquid of viscosity µ, surface tension

γ , electrical conductivity K , and permittivity ε0ε that is injected into a dielectric
medium of permittivity ε0 through a circular orifice of radius a drilled through a plate
electrode. A high voltage is applied between this electrode and another distant parallel
electrode, which leads to a uniform field E∞ far from the orifice. Let El and E denote
the electric fields in the liquid and in the dielectric medium, which, in the absence of a
magnetic field, are of the form El = ∇ϕl and E = ∇ϕ, where ϕl and ϕ are the negative
of the electric potentials. The field El induces a density of current given by Ohm’s law
j = K El , while charge conservation requires ∇ · j = 0 in the absence of net electric
charge in the bulk of the liquid (Landau & Lifshitz 1960). This condition reduces
to ∇ · El = 0 for a liquid of uniform conductivity. Similarly, ∇ · E = 0 in the dielectric
surrounding the liquid. The electric potentials therefore satisfy ∇2ϕ = ∇2ϕl = 0, which
are to be solved with the boundary conditions ε0(En − εEl

n) = σ and Et =El
t at the

surface of the liquid, ϕ = ϕl =0 at the plate electrode, and the condition that the
electric field should tend to E∞ away from the electrode. Here σ is the density of free
surface charge and the subscripts n and t denote the components of the electric fields
normal and tangent to the surface, with the normal pointing away from the liquid.

Electric conduction in the liquid brings electric charge to its surface at a rate KEl
n

per unit area and time. This charge is advected by the flow, leading to a convective
electric current which adds to the conduction current. The conservation equation for
the surface charge is (Saville 1997)

Dσ

Dt
= KEl

n + σn · ∇v · n, (2.1)

where Dσ/Dt = ∂σ/∂t+v · ∇σ is the material derivative at the surface, v is the velocity
of the liquid, and the second term on the right is the effect of the surface straining.
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The accumulation of charge at the surface tends to screen the liquid from the outer
field in a time of the order of the electric relaxation time te = ε0ε/K . This characteristic
time is derived from the order-of-magnitude balance of the terms ∂σ/∂t and KEl

n in
(2.1) taking σ =O(ε0εE

l
n), which is the condition for the surface charge to have an

effect in the boundary condition ε0(En − εEl
n) = σ at the liquid surface.

The electric field and the surface electric charge lead to an electric stress at the
surface of the liquid whose components normal and tangent to the surface (τ e

n and
τ e
t , respectively) are given in dimensionless form by the right-hand sides of (2.5a, b)

(Landau & Lifshitz 1960; Saville 1997). It is through this stress that the electric field
affects the flow of the liquid.

The inertia of the liquid will be neglected and the surrounding dielectric will be
assumed to be a uniform-pressure medium which does not participate in the dynamics
of the liquid. The latter assumption is appropriate when the outer medium is a vacuum,
or a gas, or a liquid much less viscous than the liquid injected through the orifice. The
effect of the inertia of the liquid in the region around the orifice is measured by the
Reynolds number ρQ/µa, where ρ is the density of the liquid. This Reynolds number
is of order 10−2 in the experiments of Hohman et al. (2001b) with glycerol and PEO
solutions, and down to 3 × 10−4 in the experiments of Jayasinghe & Edirisinghe
(2004) with silicone oils. Thus, although the Reynolds number of the flow increases
in the electrically stretched jet (see the estimate following (2.12) below), the effect of
the inertia is small in a long leading region of the jet in many cases of interest.

In what follows, the radius of the orifice a and the viscous–capillary velocity
vc = γ /µ are used as scales of length and velocity, and Ec = (γ /ε0a)1/2, Eca, ε0Ec, and
KEca

2 are used as scales of electric field, electric potential, surface density of charge,
and electric current, respectively. The following dimensionless parameters appear:

Ca =
µQ

γa2
, B

E
=

εε0E
2
∞a

γ
, ε, T =

µKa

εε0γ
, θ, (2.2)

which are a capillary number, an electrical Bond number, the dielectric constant of
the liquid, the ratio of the residence time tr = a/vc to the electric relaxation time
discussed above, and the contact angle of the liquid with the electrode.

The dimensionless equations governing the flow are

∇ · v = 0, 0 = −∇p + ∇2v, ∇2ϕl = 0 (2.3)

in the liquid, and

∇2ϕ = 0 (2.4)

outside the liquid. These equations are to be solved with the boundary conditions

−p + n · τ ′ · n + ∇ · n = 1
2

[
E2

n − εEl2

n + (ε − 1)E2
t

]
, t · τ ′ · n = σEt, (2.5a, b)

En − εEl
n = σ, Et = El

t ,
Dσ

Dt
= εT El

n + σn · ∇v · n (2.6a, b, c)

at the liquid surface, which is a material surface,

v =

{
Ca/π for r < 1,

0 for r > 1,
ϕ = ϕl = 0 (2.7a, b)

at the electrode (x = 0), and

∇ϕ = ∇ϕl =

(
B

E

ε

)1/2

i (2.8)
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far from the electrode. Here p is the pressure of the liquid referred to the pressure of
the surrounding medium and non-dimensionalized with µvc/a; τ ′ is the dimensionless
viscous stress tensor, given by the Navier–Poisson law; n and t are unit vectors
normal and tangent to the surface; x and r are the dimensionless distances to the
plate electrode through which the liquid is injected and to the axis of the injection
orifice; and i is a unit vector normal to the electrode. Conditions (2.5) are the balances
of stresses normal and tangent to the surface. The last term on the left-hand side of
(2.5a) is the normal stress due to the surface tension. The inlet flow is assumed to be
an equipotential plug flow in (2.7). These conditions are used mostly to simplify the
formulation. They can be realized by filling the inlet pipe with a metallic grid.

The surface of the liquid is assumed to be axisymmetric and is sought in the form
r = rs(x, t), where rs , the radius of the jet cross-section, satisfies

∂rs

∂t
+ vx

∂rs

∂x
− vr = 0. (2.9)

Here vx and vr are the axial and radial components of the velocity of the liquid.
Equations (2.6c) and (2.9) require additional conditions at the contact line of the

liquid surface with the electrode. The density of surface charge will be taken to
be zero at the contact line, neglecting any charge convected from the Debye layers
on the inner walls of the feeding pipe or the electrode (see Hohman et al. 2001b;
Feng 2002). Two possibilities will be considered for the contact line itself. Either it is
unconditionally attached to the edge of the orifice, or it is allowed to drift away from
the edge with the liquid surface making a constant contact angle θ with the solid
electrode. These conditions are

σ = 0

rs = 1 or

{
rs = 1 if − nx < cos θ

rs > 1 with − nx = cos θ otherwise

⎫⎬
⎭ (2.10)

at x = 0, where nx is the axial component of the unit normal to the liquid surface.
In the absence of whipping or breakup, the viscosity-dominated jet would reach

an asymptotic quasi-unidirectional regime at large distances from the orifice, where
most of the electric current is due to convection of the surface charge and the
field tangent to the surface nearly coincides with the applied field. In these conditions
2πσvxrs ≈ εT I , with vx ≈ Ca/πr2

s , and Et ≈ (B
E
/ε)1/2, so that the dimensionless electric

shear is τ e
t = σEt ≈ 1

2
εT I (B

E
/ε)1/2rs/Ca in this far region. On the other hand, the

balance of axial forces on a stationary quasi-unidirectional jet (which can be derived
from (2.3) and (2.5)) is

∂

∂x

(
3πr2

s

∂vx

∂x

)
+ πr2

s

∂

∂x

(
τ e
n − 1

rs

)
+ 2πrsτ

e
t = 0, (2.11)

where the three terms are the effective axial viscous force, the force due to the pressure
variation induced by the normal electric stress and the surface tension, and the force
due to the electric shear. Equation (2.11) differs from the momentum equation of
Hohman et al. (2001a) and Feng (2002) in that the convective acceleration of the
liquid, which leads to a term R∂(πr2

s v
2
x)/∂x with R = ρaγ/µ2, has been omitted from

the left-hand side on the assumption that R � 1. The effect of the normal electric
stress becomes negligible far downstream and (2.11) yields

rs ∼ A

x
, with A =

π

2

Ca

εT I (B
E
/ε)1/2

{
1 +

√
1 +

24

π
εT I

(
B

E

ε

)1/2}
. (2.12)
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Figure 1. Axial distributions of conduction and convection current (first row); electric field
normal and tangent to the liquid surface (second row); and normal electric stress (τ e

n ), tangent
electric stress (τ e

t ), and surface tension stress (−∇ · n, small, negative, unlabelled curves) (third
row). (a, c, e) ε = 2, and (b, d, f ) ε = 20. The solid curves are for T = 2.5 and the dashed curves
for T = 50. Ca= 300 and B

E
=50 in all the cases.

The convective acceleration of the liquid comes into play for x = O[A3/2/R1/4Ca1/2],
and the results of Kirichenko et al. (1986) would apply further downstream.

Stationary axisymmetric solutions of (2.3)–(2.10) have been computed numerically
using standard boundary element methods to solve the Stokes and Laplace equations
(2.3) and (2.4) and a second-order Runge–Kutta method to integrate the evolution
equations (2.9) and (2.6c) for the liquid surface and surface charge density, and
marching in time until the solution becomes stationary.

In typical cases, the numerical solution seems to tend to the downstream asymptotic
regime (2.12) only very far from the orifice, making it doubtful that (2.12) will always
be attained in real cases, when the jet is subject to bending instabilities and breakup.
These complexities are not discussed here and, in order to simplify the computations,
the jet is truncated and artificially suppressed beyond a section at a finite distance
from the orifice. This drastic approximation replaces (2.12). Numerical tests show
that the solution in the region of interest is insensitive to the approximation when
the jet is truncated sufficiently far from the orifice. Cutoff distances of 30 to 40 orifice
radii suffice for this purpose at the largest dimensionless flow rates discussed below.

3. Results and discussion
3.1. Numerical results

The total electric current I is the sum of the conduction current (Ib = 2π
∫ rs

0
rEl

x dr),
which decreases with distance along the jet and tends to zero far downstream, and the
surface convection current (Is = 2πσvsrs/εT ), which is zero at the injection orifice and
increases to account for the total current far downstream; see figure 1(a, b). The total
electric current is independent of x and can be computed as part of the solution. It is
plotted in figure 2 as a function of the dimensionless flow rate Ca for different values
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Figure 2. Dimensionless electric current (non-dimensionalized with KEca
2) as a function of

the capillary number. The solid curves are for a liquid surface touching the electrode with a
contact angle θ = 70◦, and the dashed curves are for a contact line attached to the edge of the
orifice. The five curves in (a), for ε = 2, are, from bottom to top, for (B

E
, T ) = (8, 50), (50, 50),

(200, 50), (50, 2.5), and (200, 2.5). In (b), for ε = 20, B
E
= 50 and T = 500, 50 and 2.5, from

bottom to top. The insets show the branching of solid and dashed curves and the smallest
Ca at which stationary solutions have been obtained. The circles in the upper inset of (b) are
numerical results and the lines have the slope 2/3 predicted by (3.2).

of T , B
E

and ε. The contact line of the liquid surface with the electrode coincides with
the edge of the orifice in a range of low Ca (dashed curves of figure 2). In this range,
which is of interest for electrospinning, the jet ceases to be stationary at a distance
from the orifice that decreases with Ca and is about 10 orifice radii at the smallest
values of Ca in figure 2. On approaching these smallest Ca, the meniscus sometimes
displays a rapid contraction which suggests that a jetting-to-dripping transition
similar to the transition in the absence of an electric field may occur. Although the
numerical code cannot follow the pinchoff and detachment of drops, the stationary
solutions show that the onset of dripping depends on the electric field and values
of ε and T . Appropriate combinations of these parameters should suppress dripping
and lead to the cone–jet regime of electrospraying, but this is not investigated here.
The two black circles in the left-hand inset of figure 2(b) are experimental results of
Hohman et al. (2001b) for glycerol (ε = 46.5, T = 45.6). The comparison with these
results is only qualitative because the feeding pipe protrudes from the electrode in the
experiments, intensifying the electric field in a manner that is not accounted for in the
computations.

The current increases with Ca but never reaches values much higher than Im =
π(B

E
/ε)1/2 when the contact line is not allowed to separate from the orifice. This Im,

which is given by the dotted horizontal lines in figure 2, is the limiting current that
would be attained if the effects of the electric shear and the transfer of current to the
surface were negligible in the vicinity of the orifice. The cross-section of the jet is then
a circle of unit dimensionless radius (for the inlet plug flow used in (2.7a)) and the
dimensionless electric field in the liquid is equal to the applied field E∞/Ec = (B

E
/ε)1/2.

The limiting current is approached and even slightly exceeded by the dashed curves of
figure 2 when Ca increases. The numerical method fails to converge above a certain
value of Ca at which the electric field flips and points toward the liquid.
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Figure 3. (a) Dimensionless radius of the jet as a function of the dimensionless streamwise
distance for Ca = 100, B

E
= 50, ε = 20, T = 2.5, and three values of the contact angle: θ = 90◦

(solid), 70◦ (dashed), and 10◦ (dotted). (b) Dimensionless electric current (non-dimensionalized
with KEca

2) as a function of θ for B
E
= 50, ε = 20, and (Ca, T ) = (300, 50) (solid), (100, 2.5)

(dashed), and (300, 2.5) (dotted). (c) Scaled cross-over distance at which Ib(xcross) = Is(xcross) as
a function of Ca for (ε, B

E
, T ). �; (2, 50, 2.5), �; (2, 200, 2.5), �; (2, 8, 50), �; (2, 50, 50), �;

(2, 200, 50), �; (20, 50, 2.5), �; (20, 50, 2.5). (d) Dimensionless electric current as a function
of T for (ε, Ca, B

E
) = (2, 300, 200), (2, 300, 50), (2, 100, 50), and (20, 300, 50), from top to

bottom. The dashed lines in the inset have the slope −1/2 predicted by (3.2).

On the other hand, the electric current increases with Ca without apparent bound
when the contact line is allowed to separate from the orifice. The solid curves of
figure 2 are for a surface making a contact angle θ = 70◦ with the electrode, and
figure 3(b) shows the evolution of the current with θ for given values of the other
parameters. Separation of the contact line from the orifice is marked in figure 2 by
the branching of the solid curve from the dashed curve for the same set of parameter
values. The solid curve is always above the dashed curve because the conduction
current across the orifice is augmented by the conduction current that enters the
liquid through the wetted region of the electrode when rs(x = 0) > 1. The area of
the wetted region increases when the contact angle decreases (see figure 3a), which
explains the initial rise of the current in figure 3(b) with decreasing θ . The current
goes through a maximum and decreases when θ is further decreased because the
electric field in the liquid decreases when its surface becomes nearly parallel to the
electrode. (Compare the field El ≈ (Ex − σ )/ε from (2.6a) for a liquid surface parallel
to the electrode with El ≈ Ex from (2.6b) for a liquid surface perpendicular to the
electrode. Here Ex is the axial field at the outer side of the surface.)

At a given value of Ca, the dimensionless electric current in figure 1 increases with
the applied field (B

E
/ε)1/2 and decreases when T is increased. The effect of (B

E
/ε)1/2

is due to the increase of the conduction current at the orifice and the wetted surface
of the electrode with the applied field. On the other hand, increasing T amounts to
increasing the rate of transfer of electric charge to the surface. This charge increases
the electric shear that stretches the jet (right-hand side of (2.5b)), and the augmented
stretching reduces the conduction current by decreasing the cross-section of the jet.
In addition, the increase of the surface charge due to the increase of T favours the
screening of the liquid from the applied field. The radius of the jet at a given distance
from the orifice is a decreasing function of (B

E
/ε)1/2 and T and increases with Ca.

The density of free surface charge σ (not displayed) is zero at the electrode, increases
with streamwise distance due to the conduction current εT El

n normal to the surface,
reaches a maximum (which increases with T ) in the current transfer region of the jet
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where the bulk conduction and surface convection currents are of the same order,
and finally decreases as σ ∼ εT I/vxrs ∼ εT Irs/Ca due to the continuous stretching of
the jet when the convection current is already of the order of the total current.

The density of free surface charge and the electric displacement in the liquid add to
generate a normal field En = σ + εEl

n at the outer side of the surface. The computed
values of the normal and tangent fields, En and Et , are given in figure 1(c, d) as
functions of the streamwise distance for a few representative cases. The normal field
increases with ε and T . It has a maximum at a position that is at or very near the
orifice for small values of ε and T , and that shifts streamwise when these parameters
and Ca are increased. The numerical results show that En is small compared with Et

for an apolar liquid (ε = 2), except in a region around the orifice where, for T = 50
and relatively small Ca, the contribution of σ gives a peak En of the order of Et .
For a polar liquid (ε =20), on the other hand, En is already of the order of Et when
T = 2.5, in which case εEl

n is the major contribution to En, and En is somewhat larger
than Et when T =50, in which case the contributions of σ and εEl

n are comparable
and peak at about the same place. Even though σ is larger than εEl

n on most of the
surface when T = 50, the contribution of the latter to En becomes negligible only far
downstream in the jet, at a distance that increases when ε or the dimensionless flow
rate Ca increase.

Since increasing T amounts to decreasing the electric relaxation time, the surface
charge is in equilibrium for large values of T , in the sense that σ ≈ En 	 εEl

n in
(2.6a); see e.g. Gañán-Calvo (1997). This does not mean that the surface of the
liquid becomes equipotential, as an electric field tangent to the surface still exists to
sustain the conduction current carried by the liquid. The tangent field leads to an
electric shear at the surface which appears to be crucial to maintain a stationary jet.
Computations carried out for a strictly equipotential liquid failed to converge to a
stationary state, showing instead a continuous decrease of the jet radius with time
until the numerical scheme breaks down.

The outward electric stress (right-hand side of (2.5a)), diminished by the relatively
small inward stress due to the surface tension, induces a depression in the liquid (see
figure 1(e, f ) and the second term of (2.11)). This depression has a maximum, which
becomes more pronounced and shifts upstream when T increases or Ca decreases,
and then slowly decreases, leading to a pressure force that opposes the flow. This
force, however, is always smaller than the resultant of the electric shear acting
on the perimeter of the jet cross-section (third term of (2.11)), so that the jet is
continuously stretched. The continuous stretching stabilizes the jet (Taylor 1969) and
probably explains its ability to negotiate the long region where the surface tension is
outbalanced by the normal electric stress.

3.2. Order-of-magnitude estimations

The characteristic length of the region of the jet where the bulk conduction current
is transferred to surface convection current (x

T
say) can be estimated in terms of the

parameters of the problem and the value of the electric current using the following
order-of-magnitude balances: (i) the condition σvxrs ∼ εT I , with vx ∼ Ca/r2

s , defines
the current transfer region; (ii) the condition that the rate of surface charge accumu-
lation (left-hand side of (2.6c)) should be of the order of the conduction current
normal to the surface (first term on the right-hand side of (2.6c)) requires vxσ/x

T
∼

εT El
n, where El

n ∼ rs(BE
/ε)1/2/x

T
from the divergence-free condition ∇ · El = 0 with

El
x ∼ (B

E
/ε)1/2; (iii) the balance of axial viscous and electric forces in (2.11), already

used to derive (2.12), requires r2
s vx/x

2
T

∼ rsτ
e
t , where τ e

t ∼ σ (B
E
/ε)1/2. These three
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balances taken together imply

x
T

∼ Ca

(εT )1/2I
, rsT

∼ I 1/2

(B
E
/ε)1/4

, σ
T

∼ εT I 3/2

Ca(B
E
/ε)1/4

, (3.1)

where rsT
and σ

T
are the characteristic values of the dimensionless jet radius and

surface charge density in the current transfer region. This σ
T

is an estimate of the
maximum surface charge density. The estimates (3.1) are in line with the numerical
results. Figure 3(c) shows the distance xcross to the orifice at which the conduction and
convection currents are equal to each other. As can be seen, results for different values
of ε, T and B

E
approach a common straight line when the scaling suggested by the

first estimate (3.1) is used. The ratio of the normal electric displacement to the surface
charge density is εEl

n/σ ∼ (B
E
/T )1/2 in the current transfer region, independent of the

flow rate and the electric current. The condition of equilibrium of the surface charge
is therefore T 	 B

E
.

An estimate of the dimensionless electric current as a function of the parameters of
the problem can be obtained noticing that the axial variation of Et in figure 1(c, d)
reflects that the axial field induced by the charge on the surface of the jet is of the
order of the applied field. Since the jet acts as a line of charge, the induced axial field
is of order EnrsT

/x
T

with En ≈ σ
T

(see e.g. Ashley & Landahl 1965; Feng 2002), and
the condition that this field should be of order (B

E
/ε)1/2 gives, upon using (3.1),

I ∼ Ca2/3(B
E
/ε)1/3

(εT )1/2
. (3.2)

This estimate should be valid for capillary numbers large compared with the minimum
value at which a stationary jet ceases to exist and for values of the other parameters
such that the stretching of the jet is large in the current transfer region (x

T
	 1

and rsT
� 1), in order for (3.1) to apply. The logarithmic plot in the upper inset

of figure 2(b) shows that the current follows a Ca2/3 law for ε =20, B
E
= 50, and

different values of T . The inverse square-root dependence of the current on T is
achieved for large values of this parameter, as illustrated in figure 3(d). The predicted
power-law dependence on the applied field also seems to occur for large values of the
field, though this result is probably less relevant, as long stationary jets should not
be expected in large ranges of (B

E
/ε)1/2. In dimensional variables, (3.2) amounts to

an electric current proportional to ε
1/3
0 µ1/6K1/2E2/3

∞ Q2/3, which is independent of the
surface tension and depends weakly on the viscosity of the liquid.

The estimates (3.1) and (3.2) have been worked out for a uniform applied electric
field, which is specific to the parallel-plate electrode configuration. These estimates
can be easily adapted to other forms of the electric field far from the orifice (see
Higuera 2004 for a similar analysis of the cone–jet regime of an electrospray). Thus for
Et ∼ 1/x1/2

T
, which is the electric field of a Taylor cone, (3.2) changes to I ∼ (Ca/εT )1/2,

recovering the square-root dependence of the current on the flow rate which is the
hallmark of the cone–jet regime. If Et ∼ B/x

T
with B constant, which is the field

around an isolated needle, then the estimate of the current becomes I ∼ B2/(εT )1/2,
independent of the flow rate.

4. Conclusions
The creeping flow of a stationary jet of a Newtonian liquid with finite electrical

conductivity injected into a uniform electric field through a circular orifice in one of
the electrodes creating the field has been described numerically. The flow is driven
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mainly by the electric shear due to the action of the electric field on the electric
charge that the field itself accumulated at the surface of the liquid. The electric
current carried by the jet has been computed and shown to depend on the wetting
conditions at the electrode surface. The crucial role of the electric shear at establishing
a stationary jet has been confirmed, and the effect of the surface tension has been
found to be small in a long region of the jet. Order-of-magnitude estimates have been
worked out for the electric current and the properties of the jet in the region where
the conduction current is transferred to surface convection current. These estimates
provide a physical interpretation of the numerical results.

This work was supported by projects DPI2004-05246-C04-02 (MEC), S-0505/ENE-
229 (CM), and R05/9961 (UPM-CM).
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